Graver basis and proximity techniques for block-structured separable convex integer minimization problems
نویسندگان
چکیده
We consider N-fold 4-block decomposable integer programs, which simultaneously generalize N-fold integer programs and two-stage stochastic integer programs with N scenarios. In previous work [R. Hemmecke, M. Köppe, R. Weismantel, A polynomial-time algorithm for optimizing over N-fold 4block decomposable integer programs, Proc. IPCO 2010, Lecture Notes in Computer Science, vol. 6080, Springer, 2010, pp. 219–229], it was proved that for fixed blocks but variable N , these integer programs are polynomial-time solvable for any linear objective. We extend this result to the minimization of separable convex objective functions. Our algorithm combines Graver basis techniques with a proximity result [D.S. Hochbaum and J.G. Shanthikumar, Convex separable optimization is not much harder than linear optimization, J. ACM 37 (1990), 843–862], which allows us to use convex continuous optimization as a subroutine.
منابع مشابه
A polynomial oracle-time algorithm for convex integer minimization
In this paper we consider the solution of certain convex integer minimization problems via greedy augmentation procedures. We show that a greedy augmentation procedure that employs only directions from certain Graver bases needs only polynomially many augmentation steps to solve the given problem. We extend these results to convex N-fold integer minimization problems and to convex 2-stage stoch...
متن کاملThe Quadratic Graver Cone, Quadratic Integer Minimization, and Extensions
It has been shown in a number of recent papers that Graver bases methods enable to solve linear and nonlinear integer programming problems in variable dimension in polynomial time, resulting in a variety of applications in operations research and statistics. In this article we continue this line of investigation and show that Graver bases also enable tominimize quadratic and higher degree polyn...
متن کاملSolving Multiple-Block Separable Convex Minimization Problems Using Two-Block Alternating Direction Method of Multipliers
Abstract. In this paper, we consider solving multiple-block separable convex minimization problems using alternating direction method of multipliers (ADMM). Motivated by the fact that the existing convergence theory for ADMM is mostly limited to the two-block case, we analyze in this paper, both theoretically and numerically, a new strategy that first transforms a multiblock problem into an equ...
متن کاملConvex integer maximization via Graver bases
We present a new algebraic algorithmic scheme to solve convex integer maximization problems of the following form, where c is a convex function on R and w1x, . . . , wdx are linear forms on R, max {c(w1x, . . . , wdx) : Ax = b, x ∈ N} . This method works for arbitrary input data A, b, d, w1, . . . , wd, c. Moreover, for fixed d and several important classes of programs in variable dimension, we...
متن کاملA Polynomial-Time Algorithm for Optimizing over N-Fold 4-Block Decomposable Integer Programs
In this paper we generalize N-fold integer programs and two-stage integer programs with N scenarios to N-fold 4-block decomposable integer programs. We show that for fixed blocks but variable N , these integer programs are polynomial-time solvable for any linear objective. Moreover, we present a polynomial-time computable optimality certificate for the case of fixed blocks, variable N and any c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 145 شماره
صفحات -
تاریخ انتشار 2014